Wednesday, Oct. 3, 2012 No Mental Math. No TISK. Discuss Marvelous Shot problem.

HW: p. 193 #14-19, 28-30

ALE

§4-2 Measures of Angles in Triangles

 Last week, we looked at triangles and tried to prove how many degrees are in the triangle.

Theorems

Triangle Sum Theorem If a triangle exists, then the sum of the measures of the interior angles of the triangle is equal to 180°.

Proof of Triangle Sum Theorem

- Given: $\triangle ABC$
- Prove: $m \not A + m \not A B + m \not A C = 180^{\circ}$

Statement	Reason				
1) <i>∆ABC</i>	1) Given				
2) $\overrightarrow{AD} \overrightarrow{BC}$	 Through any point not on a line, there exists exactly one line parallel to that line through that point. 				
3)	ul ∡s 3) Assumed ≰s				
4) $\measuredangle 3 \cong \measuredangle C \& a$	$1 \cong \measuredangle B$ 4)If lines $ \Rightarrow AI \measuredangle s$ are \cong				
5) $m \neq 3 = m \neq C$ & $m \neq 1 = m \neq B$ 5) If \neq s are $\cong \Rightarrow$ measures =					
6) $m \neq 1 + m \neq 2 + m \neq 3 = m \neq DAE$ 6) \neq Add Post.					
7) $\angle DAE$ is a straight angle 7) assumed					
8) m $\measuredangle DAE = 1$	0° 8) If \measuredangle is straight \Rightarrow measure = 180°	,			
9) <i>т</i> 41 + <i>т</i> 42 <i>т</i> 4В + <i>т</i> 4А	+ $m \neq 3 = 180^{\circ}$ 9) If $a = b$ then a can sult $m \neq C = 180^{\circ}$ for b in any equation	dı			
10) <i>m</i> 4A + <i>m</i> 4	$+ m \measuredangle C = 180^{\circ}$ 10) Commutative Prop.	of			

Now that we know that...

- Let's look back at some of the classifications by angles...
 - Acute Triangle
 - Equiangular Triangle
 - Right Triangle
 - Obtuse Triangle

Can a triangle be both... and...?

Theorems

Exterior Angle Theorem

If a triangle exists, then the measure of an exterior angle of the triangle is equal to the sum of the measures of the two nonadjacent interior angles.

Proof of Exterior Angle Theorem

- Given: $\triangle ABC$
- **Prove**: $m \not A + m \not A = m \not BCD$

C

State	ment	Reason			
1) ∆ <i>A</i> ₿	3 <i>C</i>	1) Given			
2) $m \not A + m \not A B + m \not A C B = 180$					
2) Triangle Sum Theorem					
3) ∡ <i>A</i>	СВ & 4В	BCD are a l.p.	3) Assumed		
4) <i>m</i> ∡	ACB + 1	$n \measuredangle BCD = 180$) 4) L.P. Postulate		
5) m∡ <i>m</i> ∡B -	АСВ + 1 + т∡АС	n4BCD = m4A B	A + 5) Substitution Prop of =		
6) <i>m</i> ∡	BCD =	$m \not = A + m \not = B$	6) Subtraction Prop of =		
7) <i>m</i> ∡	.A + m∡	$B = m \measuredangle B C D$	7) Symmetric Prop of =		

A

Using the Exterior Angle theorem, we know that

$$(4x - 7)^{\circ} = x + 110^{\circ}$$
So, we solve the equation!

$$x = 39$$

$$3x - 7 = 110 \quad (4x - 7)^{\circ} = 4(39)$$

$$3x = 117 \qquad = 156 - 1409$$

A corollary is a statement that can be easily proven using a theorem.

Theorems

Corollary to the Triangle Sum Theorem The acute angles of a right triangle are complementary.

 $m \angle 1 + m \angle 2 = 90^{\circ}$

Proof of the Corollary

 You will have to prove the corollary on a quiz.

Find the measures of the unknown angles.

Using the Corollary to the Triangle Sum Theorem, we know that

$$2x + x = 90^{\circ}$$

So, we solve the equation!

90°

$$x = 30$$

$$2x^{\circ} = 2(30) = 60^{\circ}$$

$$x^{\circ} = 30^{\circ}$$

Find the measures of the unknown angles.

• The measure of one acute angle of a right triangle is one-fourth the measure of the other acute angle. $m \not = 1 = \frac{1}{4} m \not = 2$

Using the Corollary to the Triangle Sum Theorem, we know that

$$m \measuredangle 1 + m \measuredangle 2 = 90$$

$$\frac{1}{4}m \measuredangle 2 + m \measuredangle 2 = 90$$

$$\frac{5}{4}m \measuredangle 2 = 90$$

$$m \measuredangle 2 = 72$$

$$m \measuredangle 2 = 72$$

Homework

• p. 193 #14-19, 28-30

